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0.1 Singular Value Decomposition

Singular value decomposition (SVD) is an extremely powerful and useful tool

in Linear Algebra. In this appendix, we will only give the formal definition

of SVD and discuss some of its more important properties. For a more

comprehensive numerical discussion see, for example, [3] and [4]; [4] gives

also a complete implementation of the SVD-algorithm in the C-programming

language.

SVD decomposes a matrix A ∈ IRm×n into the product of two orthonor-

mal matrices, U ∈ IRm×m, V ∈ IRn×n, and a pseudo-diagonal matrix D =

diag(σ1, .., σρ) ∈ IRm×n, with ρ = min(m, n) (i.e., all components except the

first ρ diagonal components are zero), such that

A = UDVT . (1)

Any matrix can be decomposed in this fashion. If we denote by ui and vi

the columns of U and V, respectively, we can rewrite Eq. 1 as weighted sum

of corresponding outer products

A =
ρ∑

i=1

σiuiv
T
i . (2)

By convention, the diagonal elements σi of D - which are referred to

as singular values - are non-negative1 and sorted in decreasing order, i.e.

σ1 ≥ σ2 ≥ ... ≥ σρ ≥ 0; this convention makes the SVD unique except

when one or more singular values occur with multiplicity greater one (in

which case the corresponding columns of U and V can be replaced by linear

combinations of themselves, see [4]). Let us further denote by ρ0 the index of

the last non-zero singular value, i.e., σi = 0 for i > ρ0 and σi > 0 for i ≤ ρ0.

Depending on the values of m and n, the decomposition depicted by Eq. 1

is often given in a more compact manner; in particular, if the number of rows

of A is greater than or equal to its number of columns, i.e., m > n, the last

m−n columns of U and the last (all zero!) m−n rows of D can be omitted.

Hence, in this “economy size” decomposition,U ∈ IRm×n will be a column-

orthonormal matrix (i.e., UTU = I will still hold), and D ∈ IRn×n a diagonal

matrix, respectively.

1If σi is negative, we can make it positive by simply multiplying either the ith column
of U or the ith column of V by −1.
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0.1.1 Range and Nullspace

An important property of SVD is that it explicitly constructs orthonormal

bases for the range and the nullspace of A. This follows directly from the

decomposition given in Eq. 2 and the orthonormality of U and V:

• All vectors b in the range of A (range(A)), i.e., all vectors b =

Ax that can be obtained as a linear combination of the columns of

A, lie in the span of the first ρ0 columns of U (the columns with

corresponding non-zero singular values). On the other hand, each of

the first ρ0 columns of U lies in the range of A (since ui = 1
σi

Avi for

1 ≤ i ≤ ρ0). Thus, u1..uρ0 form an orthonormal basis of range(A).

• All vectors w in the nullspace of A, i.e., all vectors satisfying Ax = 0,

must be orthogonal to the first ρ0 columns of V (these are the rows of

VT with corresponding non-zero singular values); otherwise, for some

1 ≤ i ≤ ρ0, we have σiui(v
T
i w) 6= 0, which, together with the ortho-

gonality of the ui, implies Ax 6= 0. It follows that w must lie in the

subspace spanned by the last n − ρ0 columns of V, which themselves

lie in the nullspace of A. Thus, vρ0+1..vn form an orthonormal basis of

the nullspace of A.

It is clear from the discussion above that SVD can be used to find an

orthonormal basis spanning the linear subspace induced by any n linearly

independent vectors ai ∈ IRm, n ≤ m: if one computes the SVD of the

matrix whose columns are the ai, the solution is given by the first n column

vectors of U. If, however, D contains less than n non-zero singular values,

i.e, ρ0 < ρ = n, the ai are linearly dependent and only the first ρ0 column

vectors of U should be retained.

Although the task of constructing an orthonormal basis has historically

been addressed by Gram-Schmidt-orthonormalization, SVD should be pre-

ferred because it is numerically far more stable.

0.1.2 Rank, Condition Number and Matrix Inversion

The rank of a matrix A is defined as the number of its linearly independent

rows (columns), or, equivalently, as the dimensionality of the linear subspace

spanned by its rows (columns). In particular, we have

rank(A) = dim(range(A)) = ρ0. (3)
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The dimensionality of the the nullspace of A is also referred to as its nullity

(nullity(A)); for quadratic matrices A ∈ IRm×m, it holds that

rank(A) + nullity(A) = m. (4)

A quadratic matrix A with rank(A) = m, i.e., ρ = ρ0 is said to be non-

singular or to have full rank; in particular, a quadratic matrix is invertible

iff it is non-singular. This is clearly a very desirable property, since it implies

that all linear equations

b = Aw (5)

yield a unique solution, namely w = A−1b. The inversion itself can easily

be computed using SVD; since both U and V are orthonormal matrices, it

holds that U−1 = UT and V−1 = VT , and thus we have

A−1 = (VT )−1D−1U−1 = Vdiag(1/σ1, .., 1/σρ)U
T . (6)

While the inversion of U and VT is trivial, the matrix D might con-

tain zero singular values (i.e., ρ > ρ0), in which case the matrix A itself is

singular and the corresponding diagonal entries in D−1 become infinite. In

practice, even very small (but non-zero) singular values will cause A to be-

come numerically singular; in fact, the relevant quantity here is the ratio of

the largest to the smallest singular value, σ1/σp, which is referred to as the

condition number of A . If the condition number becomes too large, i.e.,

when its reciprocal approaches the machine precision ε, A is said to be ill-

conditioned. In particular, when we have one or more zero singular values,

the condition number becomes infinite. In practice, the singular values can

be used to compute the effective rank ρe (≤ ρ0) of A w.r.t. a given threshold

εe as the index of the smallest singular value for which σi/σ1 > εe still holds,

i.e., σi/σ1 > εe for i ≤ ρe and σi/σ1 ≤ εe for i > ρe. εe is typically chosen

several orders of magnitude larger than ε, but the concrete value is problem

dependent and will normally have to be determined empirically.

0.1.3 Equation Solving and Linear Least Squares

As shown in the previous section, SVD can be used to solve quadratic linear

systems, provided the coefficient matrix A is non-singular. If, however, A is

singular, the system will no longer yield a unique solution (since we can add

any vector from the - non-empty - nullspace of A to a particular solution

w0) or, worse, no solution at all (if b /∈ range(A)).
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Both issues can be addressed by discarding too small singular values, i.e.,

by replacing the diagonal entries 1/σi in D−1 (cf. Eq. 6) with 0 for i > ρe,

resulting in a modified matrix inverse

Â−1 = Vdiag(1/σ1, .., 1/σρe , 0, ..0)UT , (7)

solution vector

w = Â−1b (8)

and reconstruction

b̂ = Aw. (9)

This operation has several effects:

• By discarding the singular values with index i > ρ0, we restrict the

inversion to the range of A. Let ci denote the projection of b onto the

ith column of U, i.e, ci = uT
i b. Then we have (cf. Eqs. 7, 8)

w =
ρ0∑
i=1

vici/σi

and, due to the orthonormality of the vi,

b̂ =
ρ0∑
i=1

uici

(cf. Eq. 9); thus, the reconstruction b̂ is just the projection of b onto

the linear subspace spanned by the first ρ0 columns of U (i.e., the range

of A). Analytically, this approach yields the minimum residual error

in the least squares sense. In practice, additionally discarding small,

but non-zero singular values (with index i > ρe) will normally yield a

numerically more robust solution with smaller effective residual error

‖b− b̂‖ (see below).

• By zeroing the inverse of very small singular values, we discard quan-

tities that are dominated by roundoff-error. This is based solely on

a numerical argument: analytically, the contribution of small singular

values should not be neglected, as long as they are non-zero. From

a numerical point of view, however, when the relative magnitude of a

singular value approaches machine precision, even the first few signif-

icant digits are likely to consist only of roundoff-error. Thus, zeroing

out these values will normally lead to a better solution w with smaller

residual error [4].
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• If A is singular, the solution will not be unique: the set of all solutions

is given by the hyperplane spanned by the last ρ−ρ0 columns of V and

centered at w0, whereby w0 is a particular solution. However, Eq. 8

will always yield the solution with the smallest norm (for a proof, see

[4]).

The discussion above carries over without modification to the general case

of rectangular matrices. In particular, if A corresponds to the coefficient

matrix of an overdetermined system of linear equations, we can use SVD to

obtain the linear least squares solution of this system in a numerically stable

fashion.

Consider the following quadratic (least squares) optimization problem:

minimize

‖Aw − b‖ (10)

for given A ∈ IRm×n, m > n, and b ∈ IRm. The gradient of Eq. 10 w.r.t. w

is obtained as

2AT (Aw − b). (11)

A necessary (and, due to the convexity of Eq. 10, also sufficient) condition

for optimality is obtained by setting the gradient to 0:

ATAw = ATb. (12)

Eq. 12 can also be regarded as a set of n coupled linear equations in w, known

as the normal equations of the least squares problem Eq. 10. Assuming that

ATA is non-singular, we obtain the solution w∗ as:

w∗ = (ATA)−1ATb, (13)

whereby the quantity

A† = (ATA)−1AT ∈ IRn×m (14)

is known as the pseudo-inverse of A. The pseudo-inverse can be regarded as

a generalization of matrix inversion to non-square matrices; indeed, it holds

that A†A = I (however, AA† = I is not true in general). In practice, direct

computation of the pseudo-inverse is prone to numerical instability; further-

more, it can not be computed at all when - e.g., due to column degeneracies

- the rank of A becomes less than n (in which case ATA will be singular).

If, on the other hand, we use SVD to “invert” the coefficient matrix A (cf.
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Eq. 7), we do not only get a clear diagnosis of the numerical situation, but

we are also able to deal with numerical roundoff-errors (by zeroing small

singular values) and with column degeneracies which would otherwise cause

ATA to become singular.

The formal equivalence between SVD-inversion and pseudo-inversion, pro-

vided that rank(A) = n, can easily be seen by replacing A with its SVD-

decomposition in Eq. 14. We have

A = UDVT ,

ATA = VDUTUDVT = VD2VT (15)

and, finally

A† = (ATA)−1AT = VD−2VTVDUT = VD−1UT . (16)

In the derivation of Eq. 15 and Eq. 16, we made again use of the orthonor-

mality of U and V.

Note that if rank(A) < n (i.e., ρ0 < ρ), we can no longer compute the

pseudo-inverse according to Eq. 13. In this degenerate case, SVD-inversion is

still applicable, but the solution is no longer unique. As in the case of singular

quadratic matrices, the solution space is spanned by the last ρ− ρ0 columns

of V, and SVD will return the representative with the smallest norm.

0.2 Eigenvalue Decomposition and Symmet-

ric Matrices

Let A ∈ IRm×m be a square matrix. A vector e ∈ Cm, e 6= 0 and a scalar

λ ∈ C fulfilling

Ae = λe (17)

are called an eigenvector resp. eigenvalue of A. We say also that e is an

eigenvector belonging to the eigenvalue λ. It is easily seen that if e is an

eigenvector belonging to λ, this is also true for all vectors {αe : α ∈ IR, α 6=
0}; thus, an eigenvector is effectively a 1-dimensional subspace of Cm. By

reformulating Eq. 17 as

(A− λI)e = 0, (18)

it becomes clear that the eigenvectors can also be characterized as the non-

trivial (i.e., non-zero) solutions of the homogeneous system of linear equations
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given by A − λI. In order for such non-trivial solutions to exist, however,

A− λI must be singular, that is, its determinant

pA(λ) = det(A− λI)

must be zero. pA(λ) is a mth-order polynomial in λ, which is referred to

as the characteristic polynomial of A. Thus, analytically, the eigenvalues

of A can be found as the roots of its characteristic polynomial, while the

corresponding eigenvectors are obtained by substituting the eigenvalues into

Eq. 18. Since the characteristic polynomial of a m ×m matrix is of degree

m and thus has exactly m solutions in C, every m×m matrix has exactly m

eigenvalues. In general, we will obtain not only real, but also complex solu-

tions (both for the eigenvectors and the eigenvalues). Also some of the eigen-

values may occur with multiplicity greater one or be zero. Zero-eigenvalues

are special in the sense that they can occur only for rank-deficient and thus

non-invertible matrices: as can be easily be seen from Eq. 17, their associated

(non-zero) eigenvectors must lie in the nullspace of the matrix A. In the case

of eigenvalues λm occurring with multiplicity greater one, we can replace any

eigenvectors emk
belonging to λm with linear combinations of themselves: if

emi
, emj

have the same associated eigenvalue λm, then µiemi
+ µjemj

is also

an eigenvector belonging to λm for all µi, µj ∈ IR (this follows directly from

the linearity of the “matrix operator” A). The number of linearly indepen-

dent eigenvectors belonging to an eigenvalue λm is upper-bounded by the

multiplicity of λm, mul(λm); in general, however, there is no guarantee that

mul(λm) linearly independent eigenvectors do exist.

0.2.1 Eigenvalue Decomposition of a Square Matrix

Let E ∈ IRm×m be the matrix whose columns are the eigenvectors of A,

i.e. E = (e1, .., em), and Λ = diag(λ1, .., λm) a diagonal matrix holding the

corresponding eigenvalues. Then, according to Eq. 17, it holds that

AE = EΛ. (19)

Let us further assume that A has m linearly independent eigenvectors. In

this case, E is invertible, and, by multiplying Eq.19 by E−1 from the right,

we have

A = EΛE−1. (20)
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Eq.20 is called the eigenvalue decomposition (EVD) or also spectral fac-

torization of A. We point out again that not every square matrix has a

spectral factorization.

0.2.2 Eigenvalue Decomposition of a Symmetric Ma-
trix

In this thesis, we are mainly concerned with real, symmetric matrices. A

quadratic matrix A ∈ IRm×m is called symmetric if it equals its transpose,

that is, if A = AT . Real, symmetric matrices have some important (and,

from the practitioners point of view, quite pleasing) analytical properties

w.r.t. their eigenvalue decomposition:

1. The eigenvalues of a real, symmetric matrix are all real.

2. Every real, symmetric matrix has a spectral factorization.

3. The eigenvectors of a real, symmetric matrix belonging to different

eigenvalues are orthogonal. But even in the case of eigenvalues oc-

curring with multiplicity greater one, a complete set of m orthogonal

eigenvectors can always be found.

4. The inverse of a real, symmetric matrix A is again a real, symmet-

ric matrix; A−1 has the same eigenvectors as A, but with reciprocal

eigenvalues.

5. For real, symmetric matrices, EVD and SVD become equivalent.

The most important point here is the last one, for everything else can be

deduced from the equivalence and the properties of the SVD; thus, we will

first proof point 5).

Let the SVD of A be

A = UDVT . (21)

As a consequence of A’s symmetry, U and V are identical. Thus, we have

A = UDUT (22)

or, expressed as weighted sum of outer products,

A =
m∑

i=1

σiuiu
T
i , (23)
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whereby ui denotes the ith column of U and and σi the corresponding sin-

gular value2. Note that Eq. 22 is effectively a reformulation of Eq. 20 which

replaces inversion by transposition; it is a well known fact in linear algebra

that these operations are equivalent for orthonormal matrices. From Eq. 23

and the orthonormality of the ui it follows that Aui = σiui for all 1 ≤ i ≤ m,

i.e., the ui/σi are indeed eigenvector-eigenvalue pairs of A. Since the ui are

mutually orthonormal (and thus linearly independent) and a m×m matrix

can have at most m linearly independent eigenvectors, this proofs the equiv-

alence3 of EVD and SVD for the real, symmetric case. Points 1)-4) follow

now directly from the properties of SVD discussed in section 0.1.

0.2.3 Autocorrelation and Gram Matrices

Given N observations xi ∈ IRp arranged in the columns of the sample matrix

X ∈ IRp×N = (x1, . . . ,xN). We are interested in the quantities

Ŝ =
1

N

n∑
i=1

xix
T
i =

1

N
XXT ∈ IRp×p (24)

G = (xT
i xj)1≤i,j≤p = XTX ∈ IRN×N . (25)

The sample autocorrelation matrix is an unbiased estimate of the popu-

lation autocorrelation matrix S = E [xxT ], whereas the Gram matrix G is

obtained by forming all possible inner products between the samples xi ∈ X.

There exists a strong relationship between these two matrices, which can be

exploited to reformulate algorithms based on second order statistics in terms

of Gram - and, subsequently - kernel matrices (for a more elaborate discus-

sion, see [5]). In the following, we will focus on the relation between G and

N Ŝ (i.e., we drop the scalar 1
N

in Eq.24) for the sake of clarity of presenta-

tion; in practice, this omission rarely matters, but can easily be compensated

for if required.

The matrices XXT and XTX contain essentially the same information;

in particular

2In the special case of symmetric matrices, SVD may actually give negative singular
values λi, because we have no longer the freedom to multiply either ui or vi by −1 (since,
for symmetric matrices, they must be identical).

3The equivalence is not to be confused with identity. Even different implementations
of EVD may give different eigenvectors. As discussed above, such ambiguities arise when
one or more eigenvalues occur with multiplicity greater one.
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• they are both positive semi-definite (i.e., they are symmetric and have

non-negative eigenvalues),

• they have identical rank ρ0 ≤ min(p, N)

• they share the same non-zero eigenvalues, and

• their respective eigenvectors can be obtained from the eigenvectors of

the other matrix by a simple linear mapping.

To see this, let us consider the SVD of the sample matrix X

X = UDVT . (26)

Making again use of the orthonormality of U and V, we have

XXT = UDVTVDUT = UD2UT (27)

XTX = VDUTUDVT = VD2VT , (28)

i.e., the eigenvectors of XXT are obtained as the left singular vectors U,

while the eigenvectors of XTX are obtained as the right singular vectors V.

Furthermore, we see that the non-zero eigenvalues for both matrices are given

by the squared singular values of X, i.e., λi = σ2
i (which also shows that their

eigenvalues must be ≥ 0).

Another important (and very useful) property of XXT and XTX is that

the sample matrix X can be used to map the eigenvectors of XTX (V) onto

the eigenvectors of XXT (U)

XV = UDVTV = UD. (29)

Similarly, XT can be used to obtain the eigenvectors of XTX from those of

XXT . In both cases, the mapped eigenvectors do not have unit length, but

will be scaled by the square roots of their corresponding eigenvalues.

Centering

In most cases, we are interested in the covariance of the data rather than

in its autocorrelation. Normally, centering (mean normalization) of the data

is applied before any higher order moments are computed. However, this is

not always possible (in particular, in the context of kernel methods) . In
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this subsection, we will discuss how to compensate for the effect of the mean

after the autocorrelation and the Gram matrices have been computed.

Let 1N be a N × 1 column vector with all components equal to 1
N

and

1N×N = N1N1T
N a N ×N matrix with all components equal to 1

N
. Then the

estimated mean m̂ and covariance matrix Ĉ can be written as

m̂ = X1N (30)

and

(N − 1)Ĉ = (X−X1N×N)(X−X1N×N)T

= XXT − 2X1N×NXT + X1N×NXT

= XXT −X1N×NXT

= N Ŝ−X1N×NXT , (31)

whereby in the derivation of Eq. 31 we made use of the symmetry and idem-

potency4 of 1N×N . Eq. 31 expresses the the estimated covariance solely in

terms of the sample matrix; in most textbooks on statistics, it is given in

a different (though equivalent) form, which makes the dependency on the

estimated mean m̂ explicit

Ĉ =
1

N − 1
(XXT −Nm̂m̂T ). (32)

Both formulae are, however, somewhat susceptible to roundoff-error; for prac-

tical calculations, it is better to compute Ĉ as the autocorrelation of the

mean normalized data, possibly followed by an additional error correction

step (e.g., the corrected two-pass algorithm); see [4] for details.

Similarly, we obtain an expression for the centered Gram matrix GC

GC = (X−X1N×N)T (X−X1N×N)

= XTX− 1N×NXTX−XTX1N×N + 1N×NXTX1N×N

= G− 1N×NG−G1N×N + 1N×NG1N×N . (33)

Eq. 33 is of some practical importance in the context of kernel methods:

when we replace the Gram matrix by a kernel matrix, we perform an implicit

mapping φ of the input samples into a non-linear, intermediate feature space

(the kernel matrix is the Gram matrix of the mapped samples). In general,

4A matrix (operator) A is called idempotent if AA = A.
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we cannot compute the mapping φ directly and, as a consequence, are not

able to compute the mean of the mapped samples in feature space. However,

by virtue of Eq. 33, we can compute the Gram matrix of the centered data

as function of the original Gram matrix (without having to know the mean).

0.3 Generalized Eigenproblem

The generalized eigenproblem can be stated as follows: given matrices

A, B ∈ IRn×n, find e ∈ IRn, λ ∈ IR, so that

Ae = λBe. (34)

If B is non-singular, the solutions can be obtained by solving the equivalent

(standard) eigenvalue problem

B−1Ae = λe. (35)

In particular, if B = I, we obtain the ordinary eigenvalue problem Eq. 17 as

a special case of Eq. 34. It is easily seen that, as in the case of the ordinary

eigenvalue problem, any linear combination of two eigenvectors emi
, emj

be-

longing to the same eigenvalue λm yields another eigenvector µiemi
+ µjemj

belonging to λm (for all µi, µj ∈ IR).

0.3.1 Rayleigh Quotient

Now let as assume that both A and B are symmetric and, in addition, B is

also positive definite. The ratio

r(w) =
wTAw

wTBw
, (36)

which is known as Rayleigh quotient, is closely related to the generalized

eigenproblem stated above. To see this, let us determine the extremum

(stationary) points of r(w), i.e., the points w∗ satisfying ∇r(w∗) = 0. The

gradient ∇r(w) is calculated as

∇r(w) =
2Aw(wTBw)− 2(wTAw)Bw

(wTBw)2
=

2Aw − 2r(w)Bw

wTBw
. (37)

Setting ∇r(w) to 0, we obtain

Aw = r(w)Bw, (38)
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which is recognized as Eq. 34. Thus, the extremum points w∗ (extremum

values r(w∗)) of the Rayleigh Quotient r(w) are obtained as the eigenvectors

e (eigenvalues λ(e)) of the corresponding generalized eigenproblem.

An important consequence of the symmetry of A and B is that generalized

eigenvectors ei, ej belonging to different eigenvalues λi and λj, respectively,

are orthogonal w.r.t. the inner products induced by A and B, i.e.,

eiAej = eiBej = 0, (39)

if ej and ei belong to different eigenvalues; the condition Eq. 39 also implies

that ej and ei are linearly independent (for a proof, see [1]).

0.3.2 Simultaneous Diagonalization

Given two symmetric matrices A,B ∈ IRn×n, simultaneous diagonalization

(see, for example, [2]) tries to find a nonsingular transformation matrix T,

such that

TTAT = Φ (40)

TTBT = I, (41)

whereby Φ is a diagonal matrix and I is the unit matrix.

Simultaneous diagonalization starts by finding an intermediate transfor-

mation T′ that transforms B into the unit matrix. This step is also referred

to as whitening ; if the EVD of B is given by FTBF = ΛB (ΛB being the

diagonal eigenvalue matrix), then the whitening transform T′ is obtained as

FΛ
− 1

2
B . During the second step, the simultaneous diagonalization algorithm

determines an orthonormal transformation T′′, that diagonalizes (T′)TAT′,

and, due to its orthonormality, has no effect on the unit matrix. The final

transformation is then obtained as T = T′T′′.

As can easily be verified, this implies that

AT = BTΦ (42)

B−1AT = TΦ, (43)

i.e., Φ and T are the eigenvalues and eigenvectors, respectively, of the gener-

alized eigenproblem Eq. 34, and, consequently, the extremum values (points)

of the corresponding Rayleigh quotient 36.
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In practice, the simultaneous diagonalization of two symmetric matri-

ces can be computed by two consecutive applications of EVD or SVD, thus

making it an attractive tool for solving the more complex symmetric gener-

alized eigenproblem (or obtaining the extrema of a Rayleigh quotient). It is

also applicable when B is singular: assuming rank(B) = k < n, only the

first k eigenvectors (belonging to non-zero eigenvalues) of B are used in the

whitening of B

(T′
[k])

TBT′
[k] = I[k], (44)

whereby T′ ∈ IRn×k, and the second transformation T′′ is determined by

diagonalizing (T′
[k])

TAT′
[k] ∈ IRk×k. The final transformation is then given

by T = T′T′′ ∈ IRn×k.

This approach, which could be referred to as reduced rank simultaneous

diagonalization, combines diagonalization with dimensionality reduction and

effectivly constrains the diagonalization to the range of B. A good discussion

(in the context of LDA) can be found in [6].
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